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Abstract:   

In representational measurement theory, the current theory of all measurements, 
calibration and sampling processes are assumed to be a linear transformation of the coordinate 
system, of no effect.  In this paper calibration and sampling are shown to be independent non-
linear processes which do change measurement results.  Relational measurement theory is 
developed to include calibration and sampling. The measurement changes caused by calibration 
and sampling are proven to be equal to the quantum measurement disturbance described by 
the universal uncertainty relation which has been verified by experiments.  Therefore relational 
measurement theory explains the measurement disturbance in quantum mechanics.  
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1. INTRODUCTION  

In representational measurement theory [1] a measurement result is a magnitude of equal 
intervals.  In this paper relational measurement theory [2] defines a measurement result as a 
sum of intervals, where each interval's magnitude is modified by both calibration and sampling 
processes. The application of relational measurement theory to quantum systems explains the 
disturbance of one observable when measuring a second observable [3]. In this paper: sampling 
is the division of a continuous observable into discrete intervals [4], a measurement is the sum 
of the projection of all these discrete intervals onto the measuring apparatus intervals [5], and 
calibration is the correlation of sets of the measuring apparatus intervals to externally defined 
intervals [6]; together these three processes produce a measurement result.   

 In von Neumann's development of a measurement in Hilbert space [7], the possible 
discrete elements are equivalent (not necessarily equal) and of varying probability.  Each such 
quantum element (in one dimension) may be seen as one of a measuring apparatus' minimum 
intervals in the same dimension. In representational measurement theory, these 
elements/intervals are assumed to be equal. Then the standard deviation of a distribution of 
these elements/intervals is zero.  

The Heisenberg Uncertainty Relation (HUR) [8] identifies an inconsistency when the 
elements/intervals of a measurement system are assumed to be equal.  In this paper the 
standard deviations in the HUR, shown in equation (7), are proved to be of the magnitudes of 
the observable's intervals, not of the magnitude of the observable, and are never zero. In the 
relational measurement view of the HUR, each observable's standard deviation is a measure of 
a distribution of calibration corrections. These calibration corrections appear as a measurement 
disturbance of the second observable when both observables are correlated by calibration 
corrections to the same reference.  

Sections 2 – 5 develop relational measurement theory by applying concepts from classical 
metrology.  Sections 6 – 7 apply relational measurement theory to the HUR, proving that the 
standard deviation of a distribution of discrete intervals in the HUR equals the effect of 
calibration on experimental measurement results. 

  In 2003, Ozawa [3] developed the universal uncertainty relation, equation (12), which is 
shown to support relational measurement theory.  His universal uncertainty relation, with a 
minor modification, formalizes both calibration and sampling indeterminacy [9]. In the 
Appendix, experiments by others [10] are presented which verify the universal uncertainty 
relation and therefore relational measurement theory. 

2. RELATIONAL MEASUREMENTS 

A relational measurement system defines the mean measurement result as the product of 
measurement magnitude and the standard deviation of the measurement intervals due to 
calibration and sampling processes (4).  
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Fig. 1 identifies m intervals of iu, a relational measurement result, relative to m intervals of i, 
a representational measurement.  Sampling, often treated as part of a measurement process, 
divides the observable into increments (Δs) indicated in Fig. 1 by short lines at right angles to 
the observable. A measurement is indicated by downward arrows which project the intervals 
(usually two or more sample increments) onto the measuring apparatus to be summed. 
Calibration of the measuring apparatus intervals to u (a reference unit) is indicated by the 
inward arrows.  Calibration is represented in an orthogonal plane as it is independent of 
sampling and measurement. Both planes have a common basis, the measuring apparatus.   

Example: X is a rod's length (the observable).  X is experimentally defined as a magnitude 
(m) of intervals each correlated to a minimum reference unit x (in this example a centimeter).  
The magnitude of each correlated interval is ix. The representational measurement 
(normalized) magnitude of the intervals of X is i = 1/m. The experimental measurement result 
precision [11] (local variation) is  ±Δsxi per interval i [12].  The measuring apparatus is a meter 
scale which defines the magnitude of the intervals, where each interval is calibrated to x, the 
reference interval. A calibration process makes feasible comparisons between independent 
measurement results.  The measured accuracy [11] (relative variation) of each ix is determined 
by calibration to x. The differences between mi, mx and mix are not treated in representational 
measurement theory. 

 Applying Fig. 1, ∆xi = calibration variation of each interval and ∆sxi = sample increment of 
each i interval, the calibration (1) and sampling (2) operators are:  

i xx x i    (1) 

xi xi s i    (2) 

The indeterminacy (the sum of calibration and sampling variation) of ix  is:  

    x i xii x s         (3) 

In representational measurement theory, this indeterminacy is assumed to reduce to zero 
as accuracy and precision move towards perfect [13].  This is not experimentally possible. In all 
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discrete measurements of continuous observables there is a non-cancelable minimum interval 
indeterminacy min∆ix < the product of the speed of light and the reciprocal of the highest 
sampling frequency observed. The higher the sampling frequency, the smaller |min∆ix| (the 
vertical bars represent an absolute value). When all other indeterminacy is nulled, the 
magnitude of each interval ix randomly deviates by just less than ± ∆sxi, the sampling 
increment. Therefore ∆xi cannot completely cancel ∆sxi. 

Equation (4) presents four different functions which represent the observable X (where 

brackets indicate the mean of X) based upon three different assumptions.    

  
1 1

x

x

i m i m
*

x x xi

i i

X̂ dx i i m (i ) ( s ) X   
 

 

           (4) 

The first function is from quantum mechanics [14]: * X̂ dx  .  ψ* is the complex conjugate 

of the state vector ψ (observable) of x and X̂  is the operator of X, therefore * X̂ dx 
(assumes infinitesimal sampling increments) represents the mean of a continuous observable.  

Normalized sampling (assumes i = x) transforms * X̂ dx  to a discrete measurement [15], 

shown as the second function:
1

i m

i

i




  which is the rod's length, m intervals of i.   

Calibration (1) transforms 
1

i m

i

i




  to the third function:
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i m
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



  which is the rod's length in ix 

intervals and is the current classical metrology model [16]. When the sampled increment ∆sxi 

<< ix (assumed in classical metrology), 
1

x

x

i m

x

i

i




  is close to the fourth function:  x xim (i ) ( s )    

as xi( s ) 1    sampled increment (derived below in Section 3).   

The fourth function,  x xim (i ) ( s )   , does not require these three assumptions. This 

function sums over the common basis both the calibration (1) and sampling (2) operators and is 
the only function of the four which represents the mean of the experimental measurement 
results of a continuous observable at all experimentally possible sampling frequencies.  

3. SAMPLING AND CALIBRATION EXAMPLES  

Consider a digital voltmeter (measuring apparatus) where 00.01 is the voltmeter's display of 
the minimum interval. Measuring a fixed voltage (observable) multiple times produces a 
stochastic distribution of measurement results.  The maximum indeterminacy of this 
distribution is specified by the manufacturer, for all voltmeters of this model, to be ±1% 

indeterminacy. To maintain the ±1% of a 0.01 volt measurement requires ±0.0001 volt 
precision, i.e., each interval is between 0.0099 and 0.0101 volts.  The ±1%  indeterminacy 
allows a laboratory with multiple voltmeters to make comparable measurements or compare 
measurements with other laboratories. To achieve this precision, a sampling increment of 
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0.0001 (∆sxi) volts or less is required.  The precision of a measurement result is ultimately 
limited by the Planck constant, the minimum possible sampled increment, and is never zero.   

A stochastic distribution of voltmeter measurement results occurs when applying the 
1.00000 volt observable (continuous relative to the sampling increment of 0.0001 volts) to 
many of the same model voltmeters.  Indeterminacy of the continuous observable less than the 
sampling increment is not identifiable.  The sampling process causes each of the 100 (m) 0.01 
intervals to have an indeterminacy of ∆sxi = -0.0001, 0.0000 (<∆sxi) or, +0.0001. Less than ∆sxi is 
not a zero state, but the transition between +∆sxi and -∆sxi. Therefore < ∆sxi statistically occurs 
less often than either ±∆sxi and the standard deviation of this sampling distribution is always < 
|∆sxi|. 

In this sampling example, the three possible interval magnitudes (from (2)) are: 
xi xi s i   0.0099i, 0.0100i or 0.0101i. This identifies 3100 combinations of the 100 intervals 

which establish the probability of the 200 valid measurement results with values between 
0.9900 to 1.0100 and within the defined ±1% precision.  The distribution of the 3100 possible 
combinations of the 100 intervals will, as the number of voltmeter measurements increase, 
converge to a normal distribution (bell shaped curve) as described by the central limit theorem.  
Such a distribution (i.e., sampling noise) occurs in all measurement results and is sometimes 
identified in the literature as 1/f noise, where f represents the sampling frequency in [17].  

 As a further example, an observable's angular rotation is determined by counting the teeth 
of an attached gear with m teeth per 2π rotation.  When counted by an observer, the gear teeth 
are assumed to be intervals of equal width and no indeterminacy appears. But a perfect 
measurement of angular rotation by using the gear teeth is not possible. As m becomes larger 
precision increases, but ∆s always remains just less than the wavelength of the highest 
frequency light reflected from a gear tooth and visible to an observer's eye. 

Calibration correlates each interval of the experimental measuring apparatus to external or 
non-local references [18] (from a representational measurement system) for the purpose of 
comparison. In classical metrology, calibration is assumed to be linear (very close to correct 
when ix >>∆xi).  Then the minimum interval variation cancels in normal distributions. As 
example: the 0.00 display of the voltmeter is adjusted, a known 3.00 volt measurement 
standard is applied and then a different voltmeter adjustment (calibration) changes the display 
to: 300 x 0.01 = 3.00 volt.  

The effect of both the calibration and sampling processes on a theoretical measurement 
result is excluded in representational measurement theory. This exclusion results in the 
dichotomy, presented in (4), between existing measurement theories based upon 
representational measurement theory (second function) and classical metrology measurement 
results (third function). Section 4 defines the value of the fourth function. 

4. SAMPLING ENTROPY 

The division between discrete and continuous observables is determined by the sampling 
frequency, f. That is, when f  ≥ 2 times the highest frequency of the observable, the 
observable's intervals are often assumed to be discrete relative to the measuring apparatus. 
Such a measurement assumption may be described as counting. When  f < 2 times the highest 
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frequency of the observable, the observable appears continuous relative to the measuring 
apparatus and measurement results often have a specified precision and accuracy.   

Shannon [19] identifies this entropy difference between the discrete and continuous 
processes that produce a measurement result:  "There is one important difference between the 
continuous and discrete entropies.  In the discrete case the entropy measures in an absolute 
way the randomness of the chance variable.  In the continuous case the measurement is 
relative to the coordinate system".  The italics are Shannon's. 

Shannon's formal development [20] provides (5), the sampling entropy due to ∆s.  

  2e eH( s ) log e log ( s )          (5) 

As was demonstrated in Section 3, ( s )   is near 1 in classical measurements with normal 

sampling distributions, so the elog ( s )  is near zero. This makes it practical in many classical 

measurements to ignore the sampling effects. In quantum measurements where ( s )   may 

not be near 1, this entropy change must be treated. 

5. RELATIONAL STANDARD DEVIATION 

Metrology establishes a hierarchy of measurement references (standards) to establish 
accuracy, beginning with the primary standards, then intermediate standards, and finally to the 
calibration of a measuring apparatus [21].  When a measuring apparatus is calibrated to x (a 
specific standard), its accuracy is measured by a relational standard deviation, where the mean 
of the intervals is replaced by a standard interval magnitude, x.  Based upon (1), the relational 
standard deviation is defined as:    

      
2

1

1 i m

x i i

i

i x x x x
m

 




             (6) 

Considering that x > ∆xi, each ∆xi may vary, and that square roots (except of the rare 
perfect squares) are irrational numbers, the magnitude of (6) is almost always an irrational 
number, which is indeterminate.  This is a formal demonstration that the calibration process, 
like the sampling process, is almost always indeterminate.  Therefore, the magnitude of the 
relational standard deviation of the intervals will vary with the accuracy of calibration.  

6. UNCERTAINTY RELATIONS  

A measurement disturbance, where the first measurement of an observable 
instantaneously changes the measurement of a second correlated observable is well known in 
theory and practice [22]. The measurement disturbance appears in the uncertainty relation:     

           1
2

a bi i A B * AB BA dx                (7) 

The terms on either side of ≥ in (7) are the Robertson form [23] of the HUR (where A and B 
need not be canonical conjugates). The left most term of (7) is from (6) and calculates the 
standard deviations of the intervals, ia or ib; the middle term calculates the standard deviation 
of the sum of each observable's intervals, which is σ(A) or σ(B).  When m (magnitude of A) and 
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m' (magnitude of B) are constant (i.e., m and m' are magnitudes of fixed observables), then 
σ(ia)= σ(mia)= σ(A) and σ(ib) = σ(m'ib) = σ(B). When the observables are fixed, (7) is not 
correlated to m or m' as has been assumed in quantum formalisms [24]. 

In (7) (AB – BA), the first term AB indicates the observable A is measured first, then B and 
the reverse in the second term.  The magnitude of the first term is almost always different than 
the second, identifying the first measurement changes a second differently each time. While 
this does not appear logical when measuring a fixed observable, it follows directly when the 
relational standard deviation (6) of the set of the intervals of each observable is considered. 

  As the scale of an experimental measurement approaches zero, ∆ia and ∆ib (indeterminacy 
of ia and ib ) and ia and ib (intervals) both approach the Planck constant as a limit.  Then the 
indeterminacy as a percentage of an interval increases in quantum scale measurements but is 
very small in measurement results above the quantum scale.   

Based upon recent experiments and formal developments (see Appendix), (7) expands into 
(8).  The indeterminacy relation, (8) is the product of accuracy, σ(x + ∆ia) and precision σ(∆sai), 
for one observable and the equivalent σ(x + ∆ib) and σ(∆sbi) for the other observable.  x is the 
reference unit common to A and B. 

    1
2

i ai i bi( x a ) ( s ) ( x b ) ( s ) * AB BA dx                  (8) 

   The product of the left side of (8): 

i i i bi ai i ai bi( x a ) ( x b ) ( x a ) ( s ) ( s ) ( x b ) ( s ) ( s )                      (9)        

The sum of the four variances in (9) is shown in the Appendix to be the same as the 
universal uncertainty relation (12). When ∆s is assumed to be 0, the variance of (9) is  

i i( x a ) ( x b )   , equal to the HUR.  The sum of the four variances in (9) will rarely be 

equal when resampled or recalibrated. In agreement with the experimental results and theory 
referenced in the Appendix, the calibrations and samplings to references establish the 
correlation between A and B, and measurement intervals will remain within ± ∆ix if the 
relational measurement system is not changed by time evolution, resampling or recalibration.  

The terms of (9) are expanded to better identify how precision (10) and accuracy (11) 
appear: 

 

2

1 1

1 1
ai ai ai

i m i m

i i

( s )
m m

s s
 

 

 
  

 
      

2

1 1

1 1
bi bi bi

i m i m

i i

( s ) s s
m m


 

 

 
  

 
         (10) 

 Applying (10) and assuming no other interval indeterminacy than sampling, the mean of 
all ∆sai = 0. Then σ(∆sai or ∆sbi) approaches 1,  because ∆sai or ∆sbi = 0 or ±1 increment, and 
∆sai or ∆sbi = 0 is statistically rare. This analysis is corroborated by the experiments described in 
the Appendix. The standard deviations (10) represent the sampling effects related to the local 
intervals and do not include the effects related to the non-local reference x, shown in (11).  

   
2

1

1
i a i

i m

i

( x a ) i
m

x a 




                
2

1

1
i b i

i m

i

( x b ) i b
m

x 




        (11) 
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The product of the two equations in (11) is    a b i ii i ( x a ) ( x b )      , the same as 

the left most variance (calibration) in (9) and the same as the left most term in (7), the HUR. 
This is the proof that a measurement disturbance is established by calibration. This is 
corroborated by the experiments in the Appendix.      

7. SUMMARY 

The result of an experimental measurement of a continuous observable is the sum of a 
finite set of imperfect intervals. These intervals are established by sampling, which is imperfect 
division, and may be partially corrected by calibration. The external (from the measurement 
system) calibration reference and sampling frequency reference are applied in rigorous 
experimental measurements.  Non-linear changes correlated to these external references 
change the entropy of the measurement system. In classical metrology, these entropy changes 
appear as the indeterminacy of a measurement result, termed accuracy and precision.  In 
current quantum mechanics, these entropy changes appear as a measurement disturbance. 

Since all experimental measurements are calibrated and have finite sampling increments, 
representational measurement theory does not represent the experimental measurement of 
continuous observables.  Relational measurement theory, by including the external references, 
supports consistent measurement calculations and experimental results at all scales.  
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Appendix  
 

Experimental verification of the universal uncertainty relation (12) is provided by neutron 
spin axis position experiments on a stream of neutrons (observables) [10]. This Appendix 
relates these experiments and the formal development [3] the experiments are based upon, to 
the relational measurements paper. A complete description of the experiments or the formal 
developments is provided in the source references. The notation in this Appendix follows the 
notation in each source referenced, except where noted.  

EXPERIMENTAL VERIFICATION 

In the first measurement of the experiments, the measuring apparatus A1 is detuned (de-
calibrated) in a way that it projectively measures the output operator OA instead of A thus 
establishing an error ε in the A measurement.  The subsequent measurement of the orthogonal 
observable B in the eigenstate of OA, performed by measuring apparatus A2, virtually modifies 
B to be OB from whose expectation values the disturbance η on B can be determined (from Fig. 
5 in [10]). 

The neutron spin measurement process begins with adjustments which fix at zero the 
azimuthal angle, фOA which is the detuning between A and OA. фOA is the measure of calibration 
in relational measurements.  OA is a metric of time/distance relative to the fixed precession 
period, 2 π radians, which is the reference unit of the measuring apparatus and appears as a 
distance along the y axis. Referring to Fig. 6 in [10], this preparation process establishes the 
physical placement of DC-2 to DC-3 relative to each other and to Analyzer 1.  This adjustment 
process correlates the physical distance on the y axis between DC-2 and DC-3 to n x 2 π radians. 
For the measurement of OB relative to B, DC-4, Analyzer 2 and the final detector are similarly 
adjusted to Analyzer 1. 

After the above adjustments are complete the detuning of OA may be shown. The detuning 
process changes a distance on the y axis relative to the 2 π Larmor precession which is the 
reference.  The 2 π radians represents a fixed distance on the y axis that is further divided into 
each detuning angle (фOA) shown in Fig. 8 in [10].  When DC-2/DC-3 is detuned relative to 
Analyzer 1 and Analyzer 2, OA is de-calibrated from A, OB is de-calibrated from B, and both ϵ(A) 
and η(B) change as shown in Fig. 8. The two orthogonal dimensions are not related by a Fourier 
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transform.  Thus the measurement results of A and B are only correlated by their common 
reference.  Without the additional correlation of a Fourier transform, the effect of de-
calibration on the measurement results (Fig. 10 in [10]) follows Ozawa's theory [3] closely.  

When фOA  is zero, OA=A. This is the discrete case where the measurement interval and the 
reference interval are equal and there is no calibration effect. As this experiment has 
reasonable precision ( ~1.5°, stated in page 8 in [10]) the sampling effects, σ(A) and σ(B) are 
close to 1 increment which verifies the analysis in Section 3. 

FORMAL DEVELOPMENT 

The experiments above verify the universal uncertainty relation, equation (266) in [3], as: 

 
1

2
(A, ) (B, ) (A, ) (B, ) (A, ) (B, ) Tr( A,B )                (12) 

Equation (12) is equivalent to the indeterminacy relation shown in (9), the expanded 
version of (8).  In (12) ϵ(A) is a disturbance of A caused by a measurement and η(B) is the noise 
of B that occurs due to this disturbance. ρ (applying the relational measurement vocabulary) 
represents a normalized possible measurement interval. In (12) the standard deviations shown 
as σ(A, ρ) and σ(B, ρ) represent the sampling effects the same as  σ(A) and σ(B) in [10].  When 
comparing the left side of (12) to (9), (12) must be slightly modified. This is developed below. 

   In (12) ϵ(A, ρ) and η(B, ρ) are two root mean squared values each calibrated to x 

(termed a true value [a] in [3] page 17 bottom of the right column). Thus ϵ(A, ρ) and η(B, ρ) are 
equal to the relational standard deviations i( x a )   and i( x b )  in (11). The next two 

product terms identify the variance due to the sampling effects on these two relational 
standard deviations.  

Note that a fourth term, σ(A, ρ) σ(B, ρ), appears mathematically consistent in (12).  
Modifying (12) to include this fourth term does not change the inequality of (12). This 
modification is supported by: A and B are correlated by sampling to a common reference (time) 
in the neutron spin example (not uncorrelated as expressed in [3] (235)).  Therefore the 
product of the "pre-measurement uncertainties" ([3] page 25 section C) should be included in 
(12). And, the test results in [10] show that both sampling standard deviations are slightly less 
than one, therefore their product is close to one, not zero.  

The point of modifying (12) to include this fourth term is to factor the modified (12) into 
(8).  Equation (8) identifies that the first standard deviation term of each observable is a 
calibration process and the second is a sampling process.  The experimental results can ignore 
this fourth term because the sampling entropy (5), a constant plus the log of close to one 
(which is close to zero), so the fourth term has little effect on the experimental results.  But it 
does effect the understanding of indeterminacy.   
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